Source code for vip_hci.psfsub.svd

#! /usr/bin/env python
"""
Module with functions for computing SVDs.
"""

__author__ = 'Carlos Alberto Gomez Gonzalez'
__all__ = ['SVDecomposer']

import warnings
try:
    import cupy
    no_cupy = False
except ImportError:
    msg = "Cupy not found. Do you have a GPU? Consider setting up a CUDA "
    msg += "environment and installing cupy >= 2.0.0"
    warnings.warn(msg, ImportWarning)
    no_cupy = True
try:
    import torch
    no_torch = False
except ImportError:
    msg = "Pytorch not found. Do you have a GPU? Consider setting up a CUDA "
    msg += "environment and installing pytorch"
    warnings.warn(msg, ImportWarning)
    no_torch = True

import numpy as np
from numpy import linalg
from matplotlib import pyplot as plt
from scipy.sparse.linalg import svds
from sklearn.decomposition import randomized_svd
from sklearn.utils import check_random_state
from pandas import DataFrame
from ..config import timing, time_ini, sep, Progressbar
from ..var import matrix_scaling, prepare_matrix
from ..preproc import check_scal_vector, cube_crop_frames
from ..preproc import cube_rescaling_wavelengths as scwave
from ..config import vip_figsize, check_array


[docs] class SVDecomposer: """ Class for SVD decomposition of 2d, 3d or 4d HCI arrays. Parameters ---------- data : numpy ndarray Input array (2d, 3d or 4d). mode : {'fullfr', 'annular'}, optional Whether to use the whole frames or a single annulus. inrad : None or int, optional [mode='annular'] Inner radius. outrad : None or int, optional [mode='annular'] Outer radius. svd_mode : {'lapack', 'arpack', 'eigen', 'randsvd', 'cupy', 'eigencupy', 'randcupy', 'pytorch', 'eigenpytorch', 'randpytorch'}, str optional Switch for the SVD method/library to be used. * ``lapack``: uses the LAPACK linear algebra library through Numpy and it is the most conventional way of computing the SVD (deterministic result computed on CPU). * ``arpack``: uses the ARPACK Fortran libraries accessible through Scipy (computation on CPU). * ``eigen``: computes the singular vectors through the eigendecomposition of the covariance M.M' (computation on CPU). * ``randsvd``: uses the randomized_svd algorithm implemented in Sklearn (computation on CPU), proposed in [HAL09]_. * ``cupy``: uses the Cupy library for GPU computation of the SVD as in the LAPACK version. ` * ``eigencupy``: offers the same method as with the ``eigen`` option but on GPU (through Cupy). * ``randcupy``: is an adaptation of the randomized_svd algorithm, where all the computations are done on a GPU (through Cupy). ` * ``pytorch``: uses the Pytorch library for GPU computation of the SVD. * ``eigenpytorch``: offers the same method as with the ``eigen`` option but on GPU (through Pytorch). * ``randpytorch``: is an adaptation of the randomized_svd algorithm, where all the linear algebra computations are done on a GPU (through Pytorch). scaling : {None, "temp-mean", spat-mean", "temp-standard", "spat-standard"}, None or str optional Pixel-wise scaling mode using ``sklearn.preprocessing.scale`` function. If set to None, the input matrix is left untouched. Otherwise: * ``temp-mean``: temporal px-wise mean is subtracted. * ``spat-mean``: spatial mean is subtracted. * ``temp-standard``: temporal mean centering plus scaling pixel values to unit variance (temporally). * ``spat-standard``: spatial mean centering plus scaling pixel values to unit variance (spatially). DISCLAIMER: Using ``temp-mean`` or ``temp-standard`` scaling can improve the speckle subtraction for ASDI or (A)RDI reductions. Nonetheless, this involves a sort of c-ADI preprocessing, which (i) can be dangerous for datasets with low amount of rotation (strong self-subtraction), and (ii) should probably be referred to as ARDI (i.e. not RDI stricto sensu). scale_list : numpy ndarray, optional Scaling factors to be used for re-scaling the spectral channels and aligning the speckles in the case of 4D HCI cubes. verbose : bool, optional If True intermediate messages and timing are printed. """ def __init__(self, data, mode='fullfr', inrad=None, outrad=None, svd_mode='lapack', scaling='temp-standard', scale_list=None, verbose=True): """ """ check_array(data, (2, 3, 4), msg='data') self.data = data self.mode = mode self.svd_mode = svd_mode self.inrad = inrad self.outrad = outrad self.scaling = scaling self.scale_list = scale_list self.verbose = verbose if self.mode == 'annular': if inrad is None: raise ValueError("`inrad` must be a positive integer") if outrad is None: raise ValueError("`outrad` must be a positive integer") if self.verbose: print(sep)
[docs] def generate_matrix(self): """ Generate a matrix from the input ``data``. Pixel values in the matrix are scaled. Depending on ``mode``, the matrix can come from an annulus instead of the whole frames. """ start_time = time_ini(False) if self.data.ndim == 2: print("`data` is already a 2d array") self.matrix = matrix_scaling(self.data, self.scaling) elif self.data.ndim in [3, 4]: if self.data.ndim == 3: cube_ = self.data elif self.data.ndim == 4: if self.scale_list is None: raise ValueError("`scale_list` must be provided when " "`data` is a 4D array") z, n_frames, y_in, x_in = self.data.shape scale_list = check_scal_vector(self.scale_list) if not scale_list.shape[0] == z: raise ValueError("`scale_list` length is {} instead of " "{}".format(scale_list.shape[0], z)) big_cube = [] # Rescaling the spectral channels to align the speckles if self.verbose: print('Rescaling the spectral channels to align the ' 'speckles') for i in Progressbar(range(n_frames), verbose=self.verbose): cube_resc = scwave(self.data[:, i, :, :], scale_list)[0] cube_resc = cube_crop_frames(cube_resc, size=y_in, verbose=False) big_cube.append(cube_resc) big_cube = np.array(big_cube) cube_ = big_cube.reshape(z * n_frames, y_in, x_in) self.cube4dto3d_shape = cube_.shape result = prepare_matrix(cube_, self.scaling, mode=self.mode, inner_radius=self.inrad, outer_radius=self.outrad, verbose=self.verbose) if self.mode == 'annular': self.matrix = result[0] pxind = result[1] self.yy, self.xx = pxind # pixel coords in the annulus elif self.mode == 'fullfr': self.matrix = result if self.verbose: timing(start_time)
[docs] def run(self): """ Decompose the input data. """ start_time = time_ini(False) if not hasattr(self, 'matrix'): self.generate_matrix() max_pcs = min(self.matrix.shape[0], self.matrix.shape[1]) results = svd_wrapper(self.matrix, self.svd_mode, max_pcs, verbose=self.verbose, full_output=True) if len(results) == 3: self.u, self.s, self.v = results elif len(results) == 2: self.s, self.v = results if self.verbose: timing(start_time)
[docs] def get_cevr(self, ncomp_list=None, plot=True, plot_save=False, plot_dpi=90, plot_truncation=None): """ Calculate the cumulative explained variance ratio for the SVD of a cube/matrix (either full frames or a single annulus could be used). Parameters ---------- ncomp_list : None, list or tuple, optional If provided the list is used to filter the vector of CEVR. plot : bool, optional If True, the CEVR is plotted. plot_save : bool, optional If True, the plot is saved as ./figure.pdf. plot_dpi : int, optional The DPI of the figure. plot_truncation : None or int, optional If provided, it created a second panel in the plot, focusing on the CEVR curve up to ``plot_truncation`` components. Returns ------- df_allks : pandas dataframe [ncomp_list is None] A table with the explained varaince ratio and the CEVR for all ncomps. df_klist : pandas dataframe [ncomp_list is not None] A table with the ncomp_list, the explained varaince ratio and the CEVR. """ start_time = time_ini(False) if not hasattr(self, 'v'): self.run() if self.verbose: print("Computing the cumulative explained variance ratios") self.ncomp_list = ncomp_list exp_var = (self.s ** 2) / (self.s.shape[0] - 1) full_var = np.sum(exp_var) # % of variance explained by each PC self.explained_variance_ratio = exp_var / full_var self.cevr = np.cumsum(self.explained_variance_ratio) df_allks = DataFrame({'ncomp': range(1, self.s.shape[0] + 1), 'expvar_ratio': self.explained_variance_ratio, 'cevr': self.cevr}) self.table_cevr = df_allks if plot: lw = 2 alpha = 0.4 fig = plt.figure(figsize=vip_figsize, dpi=plot_dpi) fig.subplots_adjust(wspace=0.4) ax1 = plt.subplot2grid((1, 3), (0, 0), colspan=2) ax1.step(range(self.explained_variance_ratio.shape[0]), self.explained_variance_ratio, alpha=alpha, where='mid', label='Individual EVR', lw=lw) ax1.plot(self.cevr, '.-', alpha=alpha, label='Cumulative EVR', lw=lw) ax1.legend(loc='best', frameon=False, fontsize='medium') ax1.set_ylabel('Explained variance ratio (EVR)') ax1.set_xlabel('Principal components') ax1.grid(linestyle='solid', alpha=0.2) ax1.set_xlim(-10, self.explained_variance_ratio.shape[0] + 10) ax1.set_ylim(0, 1) if plot_truncation is not None: ax2 = plt.subplot2grid((1, 3), (0, 2), colspan=1) ax2.step(range(plot_truncation), self.explained_variance_ratio[:plot_truncation], alpha=alpha, where='mid', lw=lw) ax2.plot(self.cevr[:plot_truncation], '.-', alpha=alpha, lw=lw) ax2.set_xlabel('Principal components') ax2.grid(linestyle='solid', alpha=0.2) ax2.set_xlim(-2, plot_truncation + 2) ax2.set_ylim(0, 1) if plot_save: plt.savefig('figure.pdf', dpi=300, bbox_inches='tight') if self.ncomp_list is not None: cevr_klist = [] expvar_ratio_klist = [] for k in self.ncomp_list: cevr_klist.append(self.cevr[k - 1]) expvar_ratio_klist.append(self.explained_variance_ratio[k - 1]) df_klist = DataFrame({'ncomp': self.ncomp_list, 'exp_var_ratio': expvar_ratio_klist, 'cevr': cevr_klist}) self.cevr_ncomp = cevr_klist self.table_cevr_ncomp = df_klist if self.verbose: timing(start_time) return df_klist else: if self.verbose: timing(start_time) return df_allks
[docs] def cevr_to_ncomp(self, cevr=0.9): """ Infer the number of principal components for a given CEVR. Parameters ---------- cevr : float or tuple of floats, optional The desired CEVR. Returns ------- ncomp : int or list of ints The found number(s) of PCs. """ if not hasattr(self, 'cevr'): self.get_cevr(plot=False) if isinstance(cevr, float): ncomp = np.searchsorted(self.cevr, cevr) + 1 elif isinstance(cevr, tuple): ncomp = [np.searchsorted(self.cevr, c) + 1 for c in cevr] return ncomp
def svd_wrapper(matrix, mode, ncomp, verbose, full_output=False, random_state=None, to_numpy=True, left_eigv=False): """ Wrapper for different SVD libraries (CPU and GPU). Parameters ---------- matrix : numpy ndarray, 2d 2d input matrix. mode : {'lapack', 'arpack', 'eigen', 'randsvd', 'cupy', 'eigencupy', 'randcupy', 'pytorch', 'eigenpytorch', 'randpytorch'}, str optional Switch for the SVD method/library to be used. ``lapack``: uses the LAPACK linear algebra library through Numpy and it is the most conventional way of computing the SVD (deterministic result computed on CPU). ``arpack``: uses the ARPACK Fortran libraries accessible through Scipy (computation on CPU). ``eigen``: computes the singular vectors through the eigendecomposition of the covariance M.M' (computation on CPU). ``randsvd``: uses the randomized_svd algorithm implemented in Sklearn (computation on CPU). ``cupy``: uses the Cupy library for GPU computation of the SVD as in the LAPACK version. ` `eigencupy``: offers the same method as with the ``eigen`` option but on GPU (through Cupy). ``randcupy``: is an adaptation of the randomized_svd algorithm, where all the computations are done on a GPU (through Cupy). ` `pytorch``: uses the Pytorch library for GPU computation of the SVD. ``eigenpytorch``: offers the same method as with the ``eigen`` option but on GPU (through Pytorch). ``randpytorch``: is an adaptation of the randomized_svd algorithm, where all the linear algebra computations are done on a GPU (through Pytorch). ncomp : int Number of singular vectors to be obtained. In the cases when the full SVD is computed (LAPACK, ARPACK, EIGEN, CUPY), the matrix of singular vectors is truncated. verbose: bool If True intermediate information is printed out. full_output : bool optional If True the 3 terms of the SVD factorization are returned. random_state : int, RandomState instance or None, optional If int, random_state is the seed used by the random number generator. If RandomState instance, random_state is the random number generator. If None, the random number generator is the RandomState instance used by np.random. Used for ``randsvd`` mode. to_numpy : bool, optional Whether to return intermediate arrays or not. If True (by default) the arrays computed in GPU are transferred from VRAM and converted to numpy ndarrays. left_eigv : bool, optional Whether to use rather left or right singularvectors Returns ------- V : numpy ndarray The right singular vectors of the input matrix. If ``full_output`` is True it returns the left and right singular vectors and the singular values of the input matrix. If ``mode`` is set to eigen then only S and V are returned. References ---------- * For ``lapack`` SVD mode see: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.svd.html http://www.netlib.org/lapack/ * For ``eigen`` mode see: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eigh.html * For ``arpack`` SVD mode see: https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.sparse.linalg.svds.html http://www.caam.rice.edu/software/ARPACK/ * For ``randsvd`` SVD mode see: https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/extmath.py Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * For ``cupy`` SVD mode see: https://docs-cupy.chainer.org/en/stable/reference/generated/cupy.linalg.svd.html * For ``eigencupy`` mode see: https://docs-cupy.chainer.org/en/master/reference/generated/cupy.linalg.eigh.html * For ``pytorch`` SVD mode see: http://pytorch.org/docs/master/torch.html#torch.svd * For ``eigenpytorch`` mode see: http://pytorch.org/docs/master/torch.html#torch.eig """ if matrix.ndim != 2: raise TypeError('Input matrix is not a 2d array') if ncomp > min(matrix.shape[0], matrix.shape[1]): msg = '{} PCs cannot be obtained from a matrix with size [{},{}].' msg += ' Increase the size of the patches or request less PCs' raise RuntimeError(msg.format(ncomp, matrix.shape[0], matrix.shape[1])) if mode == 'eigen': # building C as np.dot(matrix.T,matrix) is slower and takes more memory C = np.dot(matrix, matrix.T) # covariance matrix e, EV = linalg.eigh(C) # EVals and EVs # PCs using a compact trick when cov is MM' pc = np.dot(EV.T, matrix) V = pc[::-1] # reverse since we need the last EVs S = np.sqrt(np.abs(e)) # SVals = sqrt(EVals) # reverse since EVals go in increasing order S = S[::-1] for i in range(V.shape[1]): V[:, i] /= S # scaling EVs by the square root of EVals V = V[:ncomp] if full_output or left_eigv: U = EV/np.sqrt(np.abs(e)) U = U[:ncomp] if verbose: print('Done PCA with numpy linalg eigh functions') elif mode == 'lapack': # n_frames is usually smaller than n_pixels. In this setting taking # the SVD of M' and keeping the left (transposed) SVs is faster than # taking the SVD of M (right SVs) U, S, V = linalg.svd(matrix.T, full_matrices=False) V = V[:ncomp] # we cut projection matrix according to the # of PCs U = U[:, :ncomp] S = S[:ncomp] if verbose: print('Done SVD/PCA with numpy SVD (LAPACK)') elif mode == 'arpack': U, S, V = svds(matrix, k=ncomp) if verbose: print('Done SVD/PCA with scipy sparse SVD (ARPACK)') elif mode == 'randsvd': U, S, V = randomized_svd(matrix, n_components=ncomp, n_iter=2, transpose='auto', random_state=random_state) if verbose: print('Done SVD/PCA with randomized SVD') elif mode == 'cupy': if no_cupy: raise RuntimeError('Cupy is not installed') a_gpu = cupy.array(matrix) a_gpu = cupy.asarray(a_gpu) # move the data to the current device u_gpu, s_gpu, vh_gpu = cupy.linalg.svd(a_gpu, full_matrices=True, compute_uv=True) V = vh_gpu[:ncomp] if to_numpy: V = cupy.asnumpy(V) if full_output: S = s_gpu[:ncomp] if to_numpy: S = cupy.asnumpy(S) U = u_gpu[:, :ncomp] if to_numpy: U = cupy.asnumpy(U) if verbose: print('Done SVD/PCA with cupy (GPU)') elif mode == 'randcupy': if no_cupy: raise RuntimeError('Cupy is not installed') U, S, V = randomized_svd_gpu(matrix, ncomp, n_iter=2, lib='cupy') if to_numpy: V = cupy.asnumpy(V) S = cupy.asnumpy(S) U = cupy.asnumpy(U) if verbose: print('Done randomized SVD/PCA with cupy (GPU)') elif mode == 'eigencupy': if no_cupy: raise RuntimeError('Cupy is not installed') a_gpu = cupy.array(matrix) a_gpu = cupy.asarray(a_gpu) # move the data to the current device C = cupy.dot(a_gpu, a_gpu.T) # covariance matrix e, EV = cupy.linalg.eigh(C) # eigenvalues and eigenvectors pc = cupy.dot(EV.T, a_gpu) # using a compact trick when cov is MM' V = pc[::-1] # reverse to get last eigenvectors # reverse since EVals go in increasing order S = cupy.sqrt(e)[::-1] for i in range(V.shape[1]): V[:, i] /= S # scaling by the square root of eigvals V = V[:ncomp] if to_numpy: V = cupy.asnumpy(V) if full_output or left_eigv: U = EV/np.sqrt(np.abs(e)) U = U[:ncomp] if to_numpy: U = cupy.asnumpy(U) if verbose: print('Done PCA with cupy eigh function (GPU)') elif mode == 'pytorch': if no_torch: raise RuntimeError('Pytorch is not installed') a_gpu = torch.Tensor.cuda(torch.from_numpy(matrix.astype('float32').T)) u_gpu, s_gpu, vh_gpu = torch.svd(a_gpu) V = vh_gpu[:ncomp] S = s_gpu[:ncomp] U = torch.transpose(u_gpu, 0, 1)[:ncomp] if to_numpy: V = V.cpu().numpy() # V = np.array(V) S = S.cpu().numpy() # S = np.array(S) U = U.cpu().numpy() # U = np.array(U) if verbose: print('Done SVD/PCA with pytorch (GPU)') elif mode == 'eigenpytorch': if no_torch: raise RuntimeError('Pytorch is not installed') a_gpu = torch.Tensor.cuda(torch.from_numpy(matrix.astype('float32'))) C = torch.mm(a_gpu, torch.transpose(a_gpu, 0, 1)) e, EV = torch.eig(C, eigenvectors=True) V = torch.mm(torch.transpose(EV, 0, 1), a_gpu) S = torch.sqrt(e[:, 0]) for i in range(V.shape[1]): V[:, i] /= S V = V[:ncomp] if to_numpy: V = V.cpu().numpy() # V = np.array(V) if full_output or left_eigv: U = EV/np.sqrt(np.abs(e)) U = U[:ncomp] if to_numpy: U = U.cpu().numpy() # U = cupy.asnumpy(U) if verbose: print('Done PCA with pytorch eig function') elif mode == 'randpytorch': if no_torch: raise RuntimeError('Pytorch is not installed') U, S, V = randomized_svd_gpu(matrix, ncomp, n_iter=2, lib='pytorch') if to_numpy: V = V.cpu().numpy() # V = np.array(V) S = S.cpu().numpy() # S = np.array(S) U = U.cpu().numpy() # U = np.array(U) if verbose: print('Done randomized SVD/PCA with randomized pytorch (GPU)') else: raise ValueError('The SVD `mode` is not recognized') if full_output: if mode == 'lapack': return V.T, S, U.T elif mode == 'pytorch': if to_numpy: return V.T, S, U.T else: return torch.transpose(V, 0, 1), S, torch.transpose(U, 0, 1) else: return U, S, V elif left_eigv: if mode == 'lapack': return V.T elif mode == 'pytorch': return V else: return U else: if mode == 'lapack': return U.T elif mode == 'pytorch': return U else: return V def get_eigenvectors(ncomp, data, svd_mode, mode='noise', noise_error=1e-3, cevr=0.9, max_evs=None, data_ref=None, debug=False, collapse=False, scaling=None, left_eigv=False): """ Getting ``ncomp`` eigenvectors. Choosing the size of the PCA truncation when ``ncomp`` is set to ``auto``. Used in ``pca_annular`` and ``llsg``. """ no_dataref = False if data_ref is None: no_dataref = True data_ref = data if max_evs is None: max_evs = min(data_ref.shape[0], data_ref.shape[1]) if ncomp is None: raise ValueError('ncomp must be an integer or `auto`') if ncomp == 'auto': ncomp = 0 V_big = svd_wrapper(data_ref, svd_mode, max_evs, False) if mode == 'noise': if not collapse: data_ref_sc = matrix_scaling(data_ref, scaling) data_sc = matrix_scaling(data, scaling) else: data_ref_sc = matrix_scaling(data_ref, scaling) data_sc = matrix_scaling(data, scaling) V_sc = svd_wrapper(data_ref_sc, svd_mode, max_evs, False) px_noise = [] px_noise_decay = 1 # Noise (px stddev of residuals) to be lower than a given threshold while px_noise_decay >= noise_error: ncomp += 1 V = V_sc[:ncomp] if no_dataref: transformed = np.dot(data_sc, V.T) reconstructed = np.dot(transformed, V) else: transformed = np.dot(V, data_sc) reconstructed = np.dot(transformed.T, V).T residuals = data_sc - reconstructed if not collapse: curr_noise = np.std(residuals) else: curr_noise = np.std((np.median(residuals, axis=0))) px_noise.append(curr_noise) if ncomp > 1: px_noise_decay = px_noise[-2] - curr_noise # print '{} {:.4f} {:.4f}'.format(ncomp, curr_noise, # px_noise_decay) V = V_big[:ncomp] elif mode == 'cevr': data_sc = matrix_scaling(data, scaling) _, S, _ = svd_wrapper(data_sc, svd_mode, min(data_sc.shape[0], data_sc.shape[1]), False, full_output=True) exp_var = (S ** 2) / (S.shape[0] - 1) full_var = np.sum(exp_var) # % of variance explained by each PC explained_variance_ratio = exp_var / full_var ratio_cumsum = np.cumsum(explained_variance_ratio) ncomp = np.searchsorted(ratio_cumsum, cevr) + 1 V = V_big[:ncomp] if debug: print('ncomp', ncomp) else: # Performing SVD/PCA according to "svd_mode" flag ncomp = min(ncomp, min(data_ref.shape[0], data_ref.shape[1])) V = svd_wrapper(data_ref, svd_mode, ncomp, verbose=False, left_eigv=left_eigv) if left_eigv: V = V.T return V def randomized_svd_gpu(M, n_components, n_oversamples=10, n_iter='auto', transpose='auto', random_state=0, lib='cupy'): """Compute a truncated randomized SVD on GPU - adapted from Sklearn. Parameters ---------- M : ndarray or sparse matrix Matrix to decompose n_components : int Number of singular values and vectors to extract. n_oversamples : int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. Smaller number can improve speed but can negatively impact the quality of approximation of singular vectors and singular values. n_iter : int or 'auto' (default is 'auto') Number of power iterations. It can be used to deal with very noisy problems. When 'auto', it is set to 4, unless `n_components` is small (< .1 * min(X.shape)) `n_iter` in which case is set to 7. This improves precision with few components. transpose : True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case. random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. lib : {'cupy', 'pytorch'}, str optional Chooses the GPU library to be used. Note ---- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, `n_iter` can be set <=2 (at the cost of loss of precision). References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert * An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014 """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if n_iter == 'auto': # Checks if the number of iterations is explicitly specified n_iter = 7 if n_components < .1 * min(M.shape) else 4 if transpose == 'auto': transpose = n_samples < n_features if transpose: M = M.T # this implementation is a bit faster with smaller shape[1] if lib == 'cupy': M = cupy.array(M) M = cupy.asarray(M) # Generating normal random vectors with shape: (M.shape[1], n_random) Q = random_state.normal(size=(M.shape[1], n_random)) Q = cupy.array(Q) Q = cupy.asarray(Q) # Perform power iterations with Q to further 'imprint' the top # singular vectors of M in Q for i in range(n_iter): Q = cupy.dot(M, Q) Q = cupy.dot(M.T, Q) # Sample the range of M by linear projection of Q. # Extract an orthonormal basis Q, _ = cupy.linalg.qr(cupy.dot(M, Q), mode='reduced') # project M to the (k + p) dimensional space using the basis vectors B = cupy.dot(Q.T, M) B = cupy.array(B) Q = cupy.array(Q) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = cupy.linalg.svd(B, full_matrices=False, compute_uv=True) del B U = cupy.dot(Q, Uhat) if transpose: # transpose back the results according to the input convention return (V[:n_components, :].T, s[:n_components], U[:, :n_components].T) else: return U[:, :n_components], s[:n_components], V[:n_components, :] elif lib == 'pytorch': M_gpu = torch.Tensor.cuda(torch.from_numpy(M.astype('float32'))) # Generating normal random vectors with shape: (M.shape[1], n_random) Q = torch.cuda.FloatTensor(M_gpu.shape[1], n_random).normal_() # Perform power iterations with Q to further 'imprint' the top # singular vectors of M in Q for i in range(n_iter): Q = torch.mm(M_gpu, Q) Q = torch.mm(torch.transpose(M_gpu, 0, 1), Q) # Sample the range of M by linear projection of Q. # Extract an orthonormal basis Q, _ = torch.qr(torch.mm(M_gpu, Q)) # project M to the (k + p) dimensional space using the basis vectors B = torch.mm(torch.transpose(Q, 0, 1), M_gpu) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = torch.svd(B) del B U = torch.mm(Q, Uhat) if transpose: # transpose back the results according to the input convention return (torch.transpose(V[:n_components, :], 0, 1), s[:n_components], torch.transpose(U[:, :n_components], 0, 1)) else: return U[:, :n_components], s[:n_components], V[:n_components, :]